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SUMMARY

This report demonstrates that solar probes are feasible from

the viewpoint of presently planned vehicle technology. For the

early attempts the Saturn C-1 is considered to be the most likely

vehicle to place the final stage or stages into a circular orbit. If

two slightly modified but identical Centaur Jr. vehicles are used

for the upper stages, then this four stage configuration will be

capable of placing from 400 to 2500 pounds at perihelion distances

of 0.120 to 0.245 A. U. A more reliable three stage configuration,

using one Centaur Jr. for the upper stage but requiring greater

modification in the original design of the vehicle, would place

payloads of 400 to 2500 pounds at perihelion distances of 0.185 to

0.290 A. U.

Analysis of the upper stages was based on the payload value

obtained for the Saturn vehicle by using the "Generalized Powered

Flight Trajectory Program". At burnout there would be a pay-

load of 24,612 pounds in a 100 nautical mile parking orbit.
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VEHICLETECHNOLOGYCONSIDERATIONS
FORA SOLARPROBE

by

John A. Foschetti

Godda;'d Space Flip, hi Ce)#e)"

INTRODUCTION

This report continues the investigation and analysis of a possible solar probe attempt in this

decade by extending the studies of References 1 and 2. Reference 1 includes temperature and solar

radiation pressure considerations, and analytical and numerical trajectory studies. Reference 2 pre-

sents velocity requirements for achieving desired perihelion distances for both one- and two-impulse

orbits, and concludes from time considerations that the one-impulse method is the more advantageous.

Probe weight for various perihelion distances is given for two configurations, a Saturn C-1 plus H2-F 2

stages and an Atlas-Centaur plus a solid stage.

Other vehicle configurations, using 02-I-I 2 stages presently in existence or under consideration,

which can place usable payloads of 400 to 2500 pounds at perihelion distances of 0.1 to 0.3 A.U. are

investigated in the current study. After considering the probe's trajectory and velocity requirements,

we will use them to determine the number of stages necessary. This report also examines future

vehicle payload capabilities and specific impulse demands for the upper stages. For the first attempt,

the lightest structure considered - the Saturn C-1 - appears to be the most likely vehicle to place

the required payload in a circular orbit. The trajectory of the C-1 rocket was obtained from the IBM

7090 computer version of the "Generalized Powered Flight Trajectory Program" developed at the Jet

Propulsion Laboratory and is included here.

For all upper stage designs, specific impulses of 420 seconds and thrusts of 15,000 pounds have

been specified. The upper stage designs presented here emphasize: (1) payload optimization, achieved

when each stage (two upper stages) acquires equal velocity increments; (2) design practicability, by

having one design for each of two upper stages; (3) maximum reliability, by using, for example, a

three stage rocket for less ambitious missions. Because of structural requirements payload optimi-

zation cannot be achieved, but the latter two aims can be, the more appropriate depending on a mis-

sion's goal and the payload specifications. The results of this report demonstrate that a solar probe

is possible from the viewpoint of presently plammd vehicle technology and its purpose is to generate

interest in the solar probe effort.



Experimentalareasfor solar probesinclude,asstatedby Krafft A. Ehricke (Reference3, pages
107and108),

the nature of the solar corona (ionization and excitation of coronal atoms); extension of

coronal material into space; support and heating of coronal material; electron density in
inner and outer corona; electric and magnetic fields in near-solar space; evaporation of
protons and electrons from the corona and solar corpuscular radiation in general; solar
cosmic radiation and extension of the solar atmosphere into interplanetary space.

Ehricke also mentions that "Another intriguing mission of the solar probe is the exploration of the

zodiacal light .... " He points out that very little is known about the composition, mass, and motion of

the huge disc-shaped cloud that causes this light. The entire scientific significance of solar probes

cannot be appropriately assessed.

VEHICLE VELOCITY REQUIREMENT VS. PERIHELION DISTANCE"

The velocity v needed with respect to the earth, as a function of the desired perihelion distance

r, is derived in this section. Let the orbital plane of the vehicle be in the plane of the ecliptic (Fig-

ure 1), i.e.,

iv ui +1

where t' is the earth's orbital velocity, v - U - Vz , and V_ is the heliocentric departure velocity, i.e.,

the aphelion velocity for the ellipse. If the departure is at the aphelion of the transfer ellipse, then

where K e is the gravitational constant for the

sun, r- mr A is the perihelion distance,

0 < m < 1, and r^, the aphelion distance, is 1

A.U. The hyperbolic departure velocity with

respect to the earth is

where K is the gravitational constant for the

earth, r is the distance of the vehicle fromthe

earth at the time of injection, and 2K/r is the

escape velocity from the earth. By substituting

vo_ = U - V1, Ke/r A = U2, r^ = 1 A.U., and Equa-
tion 1 into Equation 2, we have

*The equations used in this section have been developed from

Reference 4.

SUN

EARTH'S ORBIT

Figure 1-Solar probe trajectory.



where u is the earth's circular velocity about the sun and in astronomical units 0 <--r -<- 1 .

(3)

TRANSITTIME

If PE is the period for the earth's motion around the sun and Pv

motion around the sun, then

is the period for the vehicle's

f 2r_/3/2Pv av3/2 A

PE aE3/2 rA3/2

where a v is the semimajor axis of the transfer ellipse and a E is the semimajor axis of the earth's

orbit. By substituting r A = 1 A.U. and PE = 365.25 days we find

Vv

T = 2- : 64.5677 (1 _ r) 3/2 days, (4)

the transit time of the vehicle from aphelion to perihelion. The expressions v f(r ) for Equation 3

and T _(%) for Equation 4 are graphically presented in Figures 2 and 3, respectively, where

0 A r _ 0.3. In Figure 12 in Reference 1 both velocity and transit time vs. perihelion distance for

the vehicle are shown with the earth at perihelion and at aphelion. Figures 2 and 3 in this report

represent the same functions for the earth at 1 A.U., and they agree with the average of the two

curves in Reference I to within 0.1 km/sec.

CHEMICALROCKETANALYSIS

The well-known rocket equation is studied in considering such factors as:

1. The minimum number of stages necessary to attain the required velocity;

2. The velocity cut-off value which would optimize the final payload;

3. Possible vehicles for placing the upper stages into a parking orbit, from the viewpoints of

present and future vehicle technology.

The rocket equation is:

*"_V (5)
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Figure 3-Vehlcle's transit time from earth to

perihelion vs. perihelion distance.

where 5v is the increment of velocity from epoch to burnout, go is the gravitational constant, I s is

the specific impulse, Mo is the initial weight of the vehicle, and Mf is the weight at burnout. Let M
P

be the propellant weight, M be the structural weight (0.1 Mp), M_be the payload weight, and

Av

x : _o Is ;

/

0.3

then the ideal equation for chemical rockets becomes

Mp + M s + Ml
ex (6)

Ms _ Ml

Substituting Ms 0 1 M and Mo : Mp _ MS + Mz into Equation 6, we find

Mo 10 e x

Ml 11 - e _ (7)

and we see thatM z _ 0 for e _ < 11 or x < 2.4. If the specific impulse is 422 seconds and r = 0.1 A.U.,

then v = 20.33 km, from Equation 3. We are here concerned with the velocity increment after circular

orbit velocity is achieved; the total velocity increment for the upper stages is ,_v v - v, where v



is the circular velocity, 7.8 km/sec. Substitution of the above values gives

5v = (20.33 - 7.8) km/sec = 12.53 km/sec, and from the definition of x,

12.53
x = 4.1356 = 3.03 > 2.4.

Thus, we must have at least two stages after the vehicle is in a parking orbit in order that Av = 12.53

km/sec. Conversely, the minimum perihelion we can obtain with a single stage vehicle is 0.167 A.U.

for Ml : 0 . The next problem is to determine the velocity cut-off of the first stage of the two stage

rocket (after achieving the parking orbit) which would maximize the final payload. Let Me be the weight

in the parking orbit, Mi the weight of the last stage plus the payload, k the fractional part of Av for the

first stage, and c the fractional part of Av for the second stage (k + c = 1). From Equation 7,

10 e cx

Mi = MI II - ecX ' (8)

10 ek x

Mc = Mi 11 - e kX" (9)

Substituting Equation 8 into Equation 9, we have

Mc = Ml \11 - eCX] 11 - ekX]

Replacing c by 1 - k in Equation 10 and simplifying yields

Mc 100 e x e kx

Ml 121 ekx - ii eX - Ii e2kx + eX ekx

(lO)

(11)

We wish to differentiate Equation 11 with respect to k in order to find what value of k will give Mc/M t
/

its minimum value. Performing the differentiation and equating the result to zero,

shows that Me/M J is a minimum when k = 1/2. In this case k = 1/2 = c and Equation 10 becomes

M (,10 e '_/2 ,,_2

M-_ = \11 - e_/2/ (12)

With

&v 12.53

go I go Is



and M_ = 500 pounds, a reasonable payload, the

specified impulse was varied and the graph for

Mr h (I_) was derived as shown in Figure 4.

The last problem mentioned at the beginning of

this section, selecting a vehicle which will

place the upper stages into a circular orbit, is

resolved by examining Figure 4 which shows

that at least 25,000 pounds is required in a

parking orbit for the maximum specific impulse

being considered. Since the orbiting of payloads

heavier than 25,000 pounds at present seems

more distant than designing engines with spe-

cific impulses of 420 seconds, the C-1 vehicle

has been chosen, its circular orbit payload

capability being the required 25,000 pounds.

PAYLOADIN A CIRCULARORBIT

The Saturn C-1 vehicle was programmed

for a 100 nautical mile circular orbit with the

"Generalized Powered Flight Trajectory Pro-

gram" developed by the Jet Propulsion Labora-

tory. For 15 seconds the vehicle followed a

vertical path. It was then tilted at a rate of

0.7877 deg/sec for 15 seconds. The remainder

of the first stage was programmed with zero

lift. A pitch up control of 13 degrees above the

local horizon was necessary during the second

stage in order for the vehicle to enter into a

circular orbit with zero flight path angle. The

results for the trajectory are shown in the Fig-

ures 5-9. Payload weight in the circular orbit

is 24,612 pounds.
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UPPERSTAGEDESIGNS

Three upper stage designs will be presented:

1. The design in which each stage acquires equal velocity increments.

.

3.

This design optimizes

the payload, as discussed earlier.

One design for both upper stages, facilitating the engineering and lowering the cost of the project.

The design of a three stage rocket for less ambitious, more reliable missions.
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OptimumFinalPayload

For equal velocity inc r e m ent s in each stage let k : 1/2 : c. Since the total velocity is

ZXv= _Xv_ + Z_v2 = 12.53 km/sec, then Av_ = 6.265 km/sec = /Xv2. From Equation g, for Me = 24,612

pounds, k = 1/2, and

X =

go Is '

where I = 422 sec, we find that Mi = 3445 pounds. In Equation 8 substitute M,

Av 2
X --

go I '

= 3445, c = 1/2, and

then Mc = 482 pounds. Now Mi = _,4 + M,4 + Ml , where M_ is the total weight of the fourth stage,

Mp4 = 10M4 , and the number "4" indicates that the value applies to the fourth stage. Therefore

Mi = 11 M4 + Mt , and the structural weight for the fourth stage is

Mi - M_

Ms4 - 11 - 270 pounds .

The required structural weight of 270 pounds is not reasonable for the engine we are considering,

a more reasonable estimate, taken from vehicle specifications, being 1100 pounds. At 0.2 A.U., pay-

load optimization is satisfied when the structural weight for the fourth stage is less than 445 pounds.

Therefore it is necessary to deviate from the attempt of attaining equal velocities for each stage.



One Design for the Two Upper Stages

We will now investigate the possibility of using one design for two upper stages, each of which

has a structural weight of 1096 pounds, a reasonable figure for an engine such as the Centaur Jr.

Let M be 24,612 pounds, Ms be 1096 pounds, I s be 420 seconds, Mpa, the propellant weight of the third

stage = 10M = 10,960 pounds, and Mp4, the propellant weight of the fourth stage = 11,460 - Ml . Sub-

stituting these values into the rocket equation yields

Avl Mc 24,612

exP-4ll6 M _ Mp4 _ M l 13,652 (13)

or

Since the circular orbit velocity is

then

_v, 2,6943 km/sec.

v< :" 7.795 km,'sec,

v t = v + Av I : 10.49 km/sec,

where v I is the velocity at the end of the third stage. Also since the initial weight of the fourth stage

is the burnout weight of the third stage less the structural weight, or M 4 = 13,652 - 1096 = 12,556,

then

and

Av2 12,556

cxp 4.116 - M + Ml (14)

F _12:556 lv : 10,49 + 4.116 in LlO96 _ Mt (15)

is the total velocity required for the two upper

stages. The graph for

is shown in Figure 10. For Mt = 400 pounds

r_ = 0.120 A.U., and for Ml = 2500 pounds

r = 0.245 A.U.
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M c

Payload and Velocity Capabilities for a

Three Stage Vehicle [One Upper Stage}

The total weight of the payload (third stage now), Mc, is Mp + Mt

= 11M s + Mt or

Mc - Mt 24,612 - Ml

M : 11 - 11

M s . Since Mp = 10Ms,

(16)

and the rocket equation becomes

Av 24,612
: (17)

exp 4.116 M + M l

Figure 11 is a graph of

Ms : _(M,)

from Equation 16 and

[: f v>] : : h(',,s).

Here, for Ml = 400 pounds r = 0.185 A.U., and

for Ml = 2500 pounds r = 0.290 A.U.
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CONCLUSION

Figure I i--Perihelion distance and structural weight

vs. the final payload weight for the three stage con-
figuration.

Upon the completion and successful performance of the C-I rocket and with slight modifications

to the specifications of the Centaur Jr., a four stage configuration will be able to orbit payloads of

400 to 2500 pounds at perihelion distances of 0.120 to 0.245 A.U. The minimum perihelion distance

attainable for a 1 pound payload is 0.10 A.U.

A more reliable, three stage configuration, having the same specific impulse but requiring greater

modifications in structural weight, will be able to deliver payloads of 400 to 2500 pounds to perihelion

distances of 0.185 to 0.290 A.U. Its minimum perihelion distance attainable for a 1 pound payload is

0.165 A.U. These figures demonstrate the feasibility of sending useful payloads to the sun.
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